مقایسه مدلهای شبکه عصبی موجک، ماشین بردار پشتیبان و برنامه ریزی بیان ژن در تخمین میزان اکسیژن محلول در اب رودخانه ها
نویسندگان
چکیده مقاله:
اکسیژن محلول در آب از موثرترین پارامترها در تعیین کیفیت آب رودخانه ها بوده و کنترل آن در رودخانه ها از مهم ترین عوامل توسعه منابع آب هر منطقه است. به همین دلیل در این پژوهش عملکرد مدلهای شبکه عصبی موجک، ماشین بردار پشتیبان و برنامه ریزی بیان ژن را جهت تخمین اکسیژن محلول در آب رودخانه کامبرلند واقع در ایالت تنسی مورد بررسی قرار گرفت. برای این منظور سری زمانی ماهانه شاخص DO رودخانه کامبرلند در طی یک دوره 10 ساله (2006-2016) با استفاده از پارامترهای دبی جریان و دما شبیه سازی شد. معیارهای ضریب همبستگی، ریشه میانگین مربعات خطا و میانگین قدر مطلق خطا برای ارزیابی و عملکرد مدلها مورد استفاده قرار گرفت. نتایج نشان داد ساختارهای ترکیبی در هر سه مدل عملکرد بهتری نسبت به سایر ساختارها ارائه می دهد. همچنین نتایج حاصل از معیارهای ارزیابی نشان داد از بین مدلهای بکار رفته، مدل شبکه عصبی موجک با بیشترین ضریب همبستگی (960/0)، کمترین جذر میانگین مربعات خطا (668/0) و نیز کمترین میانگین قدرمطلق خطا (519/0) را در مرحله صحت سنجی دارا می باشد. در مجموع نتایج نشان داد به لحاظ توانایی بالای شبکه عصبی موجک و حذف نویزهای سری های زمانی در تخمین پارامترهای کیفی آب رودخانه، این مدل میتواند، راهکاری مناسب و سریع در مدیریت کیفیت منابع آب و اطمینان از نتایج پایش کیفی و کاهش هزینه های آن مطرح شود.
منابع مشابه
مقایسه عملکرد مدلهای ماشین بردار پشتیبان، برنامه ریزی بیان ژن وشبکه بیزین در پیش بینی جریان رودخانه ها (مطالعه موردی: رودخانه کشکان)
سابقه و هدف: پیشبینی جریان رودخانهها یکی از مهمترین موارد کلیدی در مدیریت و برنامهریزی منابع آب بهویژه اتخاذ تصمیمات صحیح در مواقع سیلاب و بروز خشکسالیها، است. برای پیشبینی میزان جریان رودخانهها رویکردهای متنوعی در هیدرولوژی معرفیشده است که مدلهای هوشمند از مهمترین آنها میباشند. در این پژوهش جهت ارزیابی دقت مدلها در پیشبینی جریان رودخانه، از دادههای روزانه حوضه آبریز کشکان واقع ...
متن کاملمقایسه و ارزیابی مدلهای شبکه عصبی بیزین، برنامهریزی بیان ژن، ماشین بردار پشتیبان و رگرسیون خطی در تخمین بده جریان؛ مطالعه موردی حوضه صوفی چای
پیشبینی جریان رودخانه برای برنامهریزی طراحی و مدیریت مطمئن پروژه های منابع آب مهم است. در این پژوهش قابلیت کاربرد شبکه عصبی بیزین، برنامهریزی ژن، ماشین بردار پشتیبان و رگرسیون خطی چندمتغیره برای پیشبینی سری زمانی جریان رودخانه صوفی چای بررسی شد. سری زمانی جریان روزانه رودخانه برای دوره 1376 تا 1389 برای ایستگاه هیدرومتری تازه کند رودخانه صوفی چای مورد استفاده واقع شد. جهت بدست آوردن بهترین ...
متن کاملارزیابی و عملکرد مدل ماشین بردار پشتیبان در تخمین رسوبات معلق رودخانه ها
همواره پدیده انتقال رسوب، بسیاری از سازه های رودخانه ای و سازه های عمرانی را تحت تأثیر قرار داده و عدم اطلاع از میزان دقیق آن خسارات بسیاری را موجب می شود .از این جهت دستیابی به روشی با دقت مناسب برای تخمین میزان بار رسوبی معلق رودخانه ها بسیار حایز اهمیت است. در این پژوهش جهت تخمین رسوبات رودخانه کاکارضا واقع در استان لرستان، از مدل ماشین بردار پشتیبان استفاده گردید و نتایج آن با برنامه ریزی ب...
متن کاملکارایی مدل های ماشین بردار پشتیبان و برنامه ریزی بیان ژن در پیش بینی عملکرد محصول زعفران
با توجه به حساسیت عملکرد زعفران و تاثیرپذیری آن از پارامترهای اقلیمی و خاصیت غیرخطی توابع عملکرد گیاهی، در این تحقیق به پیشبینی عملکرد زعفران پرداخته شد. هدف از انجام این مطالعه، توانایی مدل شبیهسازی ماشین بردار پشتیبان(lssvm) و مدل برنامهریزی بیان ژن(GenXproTools5,0 )در پیشبینی عملکرد زعفران براساس دادههای هواشناسی(حداقل دما، حداکثر دما، بارش، تبخیر و رطوبت نسبی،عملکرد یکسال قبل) در مقیاس...
متن کاملتحلیل عدم قطعیت مدلهای شبکه عصبی مصنوعی و ماشین بردار پشتیبان در تخمین بارش
در این تحقیق سعی گردید، ترکیب ورودی و مدل مناسب برای تخمین بارشهای شهرستان شاهرود تعیین گردد. برای رسیدن به این هدف از دادههای ماهانه هواشناسی شامل تبخیر، دما، رطوبت نسبی هوا، تابشهای خورشیدی، سرعت باد در دوره آماری 1342 تا 1394 و مدلهای شبکه عصبی مصنوعی و ماشین بردار پشتیبان استفاده شده است. 75 درصد از دادهها برای واسنجی و 25 درصد دیگر جهت اعتبارسنجی مدلها استفاده شده است. در این تحقیق ...
متن کاملمدل سازی رواناب رودخانه صوفی چای با استفاده از ماشین بردار پشتیبان و شبکه عصبی مصنوعی
Accurate simulation runoff process can have a significant role in water resources management and related issues. The inherent complexity of this process makes difficult the use of physical and numerical models. In recent years, application of intelligent models is increased a powerful tool in hydrological modeling. The aim of this study was the application of the Gamma test to select the optim...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 14 شماره 3
صفحات 226- 238
تاریخ انتشار 2018-09-23
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023